Electromagnetismo


El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.

El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el Electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la Mecánica Cuántica.

El electromagnetismo considerado como fuerza es una de las cuatro fuerzas fundamentales del universo actualmente conocido.
Desde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.[1] Durante estos dos siglos, XVII y XVIII, grandes hombres de ciencia como William Gilbert, Otto von Guericke, Stephen Gray, Benjamin Franklin, Alessandro Volta entre otros estuvieron investigando estos dos fenómenos de manera separada y llegando a conclusiones coherentes con sus experimentos.


Michael Faraday.A principios del siglo XIX Hans Christian Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. De ahí es que los trabajos de físicos como André-Marie Ampère, William Sturgeon, Joseph Henry, Georg Simon Ohm, Michael Faraday en ese siglo, son unificados por James Clerk Maxwell en 1861 con un conjunto de ecuaciones que describían ambos fenómenos como uno solo, como un fenómeno electromagnético.


James Clerk Maxwell.Las ahora llamadas ecuaciones de Maxwell demostraba que los campos eléctricos y los campos magnéticos eran manifestaciones de un solo campo electromagnético. Además describía la naturaleza ondulatoria de la luz, y su semejanza con la naturaleza de los campos magnéticos y eléctricos, como parte de una onda electromagnética. Con una sola teoría consistente que describía estos dos fenómenos antes separados, los físicos pudieron realizar varios experimentos prodigiosos e inventos muy útiles como la bombilla eléctrica por Thomas Alva Edison o el generador de corriente alterna por Nikola Tesla. El éxito predicitivo de la teoría de Maxwell y la búsqueda de una interpretación coherente de sus implicaciones, fue lo que llevó a Albert Einstein a formular su teoría de la relatividad que se apoyaba en algunos resultados previos de Hendrik Antoon Lorentz y Henri Poincaré.

En la primera mitad del siglo XX, con el advenimiento de la mecánica cuántica, el electromagnetismo tenía que mejorar su formulación con el objetivo que sea coherente con la nueva teoría. Esto se logró en la década de 1940 cuando se completó una teoría cuántica electromagnética o mejor conocida como electrodinámica cuántica.


Electrostática

Un electroscopio usado para medir la carga eléctrica de un objetoCuando hablamos de electrostática nos referimos a los fenómenos que ocurren debido a una propiedad intrínseca y discreta de la materia, la carga, cuando es estacionaria o no depende del tiempo. La unidad de carga elemental, es decir, la más pequeña observable, es la carga que tiene el electrón. Se dice que un cuerpo esta cargado eléctricamente cuando tiene exceso o falta de electrones en sus átomos que lo componen. Por definición la carencia de electrones se la denomina carga positiva y al exceso carga negativa. La relación entre los dos tipos de carga es de atracción cuando son diferentes y de repulsión cuando son iguales.

La carga elemental es una unidad muy pequeña para cálculos prácticos, es por eso que en el sistema internacional a la unidad de carga eléctrica, el culombio, se le define como la cantidad de carga de 6,25 x 1018 electrones. El movimiento de electrones por un conductor se denomina corriente eléctrica y la cantidad de carga eléctrica que pasa por unidad de tiempo se la define como intensidad de corriente. Se pueden introducir más conceptos como el de diferencia de potencial o el de resistencia, que nos conduciría ineludiblemente al área de circuitos eléctricos, y todo eso se puede ver con mas detalle en el artículo principal.

Magnetismo


En física, el magnetismo es un fenómeno por el que los materiales ejercen fuerzas de atracción o repulsión a otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético.

También el magnetismo tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la onda electromagnética, como por ejemplo la luz.
Cada electrón es, por su naturaleza, un pequeño imán (véase Momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados.

Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica circulando por una bobina (ver dipolo magnético). De nuevo, en general, el movimiento de los electrones no da lugar a un campo magnético en el material, pero en ciertas condiciones, los movimientos pueden alinearse y producir un campo magnético total medible.

El comportamiento magnético de un material puede variar enormemente, dependiendo de la estructura del material, y particularmente de la configuración electrónica.


Historia [editar]Los fenómenos magnéticos fueron conocidos por los antiguos griegos. Se dice que por primera vez se observaron en la ciudad de "Magnesia" en Asia Menor, de ahí el término magnetismo. Sabían que ciertas piedras atraían el hierro y que los trocitos de hierro atraídos, atraían a su vez a otros. Estas se denominaron imanes naturales.

El primer filosofo que estudio el fenómeno del magnetismo fue Tales de Mileto, filósofo griego que vivió entre 625 a. C. y 545 a. C.[1] En China, la primera referencia a este fenómeno se encuentra en un manuscrito del siglo IV a. C. titulado Libro del amo del valle del diablo: «La magnetita atrae al hierro hacia sí o es atraída por éste». La primera mención sobre la atracción de una aguja aparece en un trabajo realizado entre los años 20 y 100 de nuestra era: «La magnetita atrae a la aguja».

El científico Shen Kua (1031-1095) escribió sobre la brújula de aguja magnética y mejoró la precisión en la navegación empleando el concepto astronómico del norte absoluto. Hacia el siglo XII los chinos ya habían desarrollado la técnica lo suficiente como para utilizar la brújula para mejorar la navegación. Alexander Neckham fue el primer europeo en conseguir desarrollar esta técnica, en 1187.

El conocimiento del magnetismo se mantuvo limitado a los imanes, hasta que en 1820, Hans Christian Ørsted profesor de la Universidad de Copenhague, descubrió que un hilo conductor sobre el que circulaba una corriente ejercía una perturbación magnética a su alrededor, que llegaba a poder mover una aguja magnética situada en ese entorno.[3] Muchos otros experimentos siguieron, con André-Marie Ampère, Carl Friedrich Gauss, Michael Faraday y otros que encontraron vínculos entre el magnetismo y la electricidad. James Clerk Maxwell sintetizó y explicó estas observaciones en sus ecuaciones de Maxwell. Unificó el magnetismo y la electricidad en un solo campo, el electromagnetismo. En 1905, Einstein uso estas leyes para comprobar su teoría de la relatividad especial, en el proceso mostró que la electricidad y el magnetismo estaban fundamentalmente vinculadas.

El Electromagnetismo continuó desarrollándose en el siglo XX, siendo incorporada en las teorías más fundamentales como la Teoría de campo de gauge, electrodinámica cuántica, teoría electrodébil y finalmente en el modelo estándar.


La física del magnetismo
Magnetismo, electricidad y relatividad especial [editar]Artículo principal: Electromagnetismo
Como consecuencia de la teoría de la relatividad especial de Einstein, la electricidad y el magnetismo estaban comprendidas como vinculantes. Tanto el magnetismo sin la electricidad como la electricidad sin magnetismo serían inconsistentes con la nueva teoría por los efectos como la contracción de la longitud, la dilatación del tiempo y la dependencia de la velocidad en el campo magnético. Sin embargo cuando ambas fueron tomadas en cuenta, la reciente teoría del electromagnetismo fue totalmente consistente con la relatividad.[5] En particular, un fenómeno que parece como eléctrico para un observador puede parecer magnético para otro, o más generalmente las contribuciones generales de la electricidad y el magnetismo son dependientes del marco de referencia.

Entonces, la "mezcla" de la relatividad especial entre electricidad y magnetismo en una sola dio un fenómeno inseparable llamado electromagnetismo (analogo a lo que la misma teoría "mezcló" al tiempo con el espacio en el espacio-tiempo).


Campos y fuerzas magneticas
Artículo principal: campo magnético
El fenómeno del magnetismo es ejercido por un campo magnético, p.e. una corriente eléctrica o un dipolo magnético crea un campo magnético, éste al girar imparte una fuerza magnética a otras partículas que están en el campo.

Para una aproximación excelente (pero ignorando algunos efectos cuánticos (véase electrodinámica cuántica) las ecuaciones de Maxwell (que simplifican la ley de Biot-Savart en el caso de corriente constante) describen el origen y el comportamiento de los campos que gobiernan esas fuerzas. Por lo tanto el magnetismo se observa siempre que partículas cargadas eléctricamente están en movimiento. Por ejemplo, del movimiento de electrones en una corriente eléctrica o en casos del movimiento orbital de los electrones alrededor del núcleo atómico. Estas también aparecen de un dipolo magnético intrínseco que aparece de los efectos cuánticos, p.e. del spin de la mecánica cuántica.

Capacitancia


Se define como la razón entre la magnitud de la carga de cualquiera de los conductores y la magnitud de la diferencia de potencial entre ellos.

La capacitancia siempre es una cantidad positiva y puesto que la diferencia de potencial aumenta a medida que la carga almacenada se incrementa, la proporción Q / V es constante para un capacitor dado. En consecuencia la capacitancia de un dispositivo es una medida de su capacidad para almacenar carga y energía potencial eléctrica.

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday.

CAPACITANCIA = 1F = 1 C

1 V

El farad es una unidad de capacitancia muy grande. En la práctica los dispositivos comunes tienen capacitancia que varían de microfarads a picofarads.

La capacitancia de un dispositivo depende entre otras cosas del arreglo geométrico de los conductores.

¿Qué es un capacitor?

Considere dos conductores que tienen una diferencia de potencial V entre ellos. Supongamos que tienen cargas iguales y opuestas, como en la figura. Una combinación de este tipo se denomina capacitor . La diferencia de potencial V es proporcional a la magnitud de la carga Q del capacitor.(Esta puede probarse por la Ley de coulomb o a través de experimentos.

Un capacitor se compone de dos conductores aislados eléctricamente uno del otro y de sus alrededores. Una vez que el capacitor se carga, los dos conductores tienen cargas iguales pero opuestas.

¿Cuáles son los tipos de capacitores?

Los capacitores comerciales suelen fabricarse utilizando láminas metálicas intercaladas con delgadas hojas de papel impregnado de parafina o Mylar, los cuales sirvan como material dieléctrico. Estas capas alternadas de hoja metálica y dieléctrico después se enrollan en un cilindro para formar un pequeño paquete. Los capacitores de alto voltaje por lo común constan de varias placas metálicas entrelazadas inmersas en aceite de silicón. Los capacitores pequeños en muchas ocasiones se construyen a partir de materiales cerámicos. Los capacitores variables (comúnmente de 10 a500 pF) suelen estar compuestos de dos conjuntos de placas metálicas entrelazadas, uno fijo y el otro móvil, con aire como el dieléctrico.

Un capacitor electrolítico se usa con frecuencia para almacenar grandes cantidades de carga a voltajes relativamente bajos. Este dispositivo, mostrado en la figura consta de una hoja metálica en contacto con un electrolito, es decir, una solución que conduce electricidad por virtud del movimiento de iones contenidos en la solución. Cuando se aplica un voltaje entre la hoja y el electrolito, una delgada capa de óxido metálico (un aislador) se forma en la hoja y esta capa sirve como el dieléctrico. Pueden obtenerse valores muy grandes de capacitancia debido a que la capa del dieléctrico es muy delgada y por ello la separación de placas es muy pequeña.

Cuando se utilizan capacitores electrolíticos en circuitos , la polaridad (los signos más y menos en el dispositivo) debe instalarse de manera apropiada. Si la polaridad del voltaje es aplicado es opuesta a la que se pretende, la capa de óxido se elimina y el capacitor conduce electricidad en lugar de almacenar carga.

Placas

Lamina electrolito caso

metálica

Contactos

Aceite Línea metálica

Electrodinámica


Albert Einstein desarrolló la relatividad especial merced a un análisis de la electrodinámica. Durante finales del siglo XIX los físicos se percataron de una contradicción entre las leyes aceptadas de la electrodinámica y la mecánica clásica. En particular, las ecuaciones de Maxwell predecían resultados no intuitivos como que la velocidad de la luz es la misma para cualquier observador y que no obedece a la invariancia de Galileo. Se creía, pues, que las ecuaciones de Maxwell no eran correctas y que las verdaderas ecuaciones del electromagnetismo contenían un término que se correspondería con la influencia del éter lumínico.

Después de que los experimentos no arrojasen ninguna evidencia sobre la existencia del éter, Einstein propuso la revolucionaria idea de que las ecuaciones de la electrodinámica eran correctas y que algunos principios de la mecánica clásica eran inexactos, lo que le llevó a la formulación de la relatividad especial.

Unos quince años antes del trabajo de Einstein, Wiechert y más tarde Liénard, buscaron las expresiones de los campos electromagnéticos de cargas en movimiento. Esas expresiones, que incluían en efecto del retardo de la propagación de la luz, se conocen ahora como potenciales de Liénard-Wiechert. Un hecho importante que se desprende del retardo, es que un conjunto cargas eléctricas en movimiento ya no puede ser descrito de manera exacta mediante ecuaciones que sólo dependa de las velocidades y posiciones de las partículas. En otras palabras, eso implica que el lagrangiano debe contener dependecias de los "grados de libertad" internos del campo.
La electrodinámica cuántica, como sugiere su nombre, es la teoría cuántica de la electrodinámica. Esta teoría se describe mediante un campo vectorial asociado al fotón

Se centra en la descripción del fotón (la partícula de luz que no existe en la electrodinámica clásica).

Se puede señalar que la formulación de la teoría de la relatividad restringida se compone de dos partes, una de ellas «cinemática» que ya describimos en las separatas anteriores, y que establece las bases de la teoría del movimiento – y, por consiguiente, del conjunto de la teoría– dándoles su expresión matemática, y una parte «electrodinámica» que, combinando las propuestas de la primera parte con la teoría electromagnética de Maxwell, Hertz y Lorentz , establece deductivamente un cierto número de teoremas sobre las propiedades de la luz y, en general de las ondas electromagnéticas como, asimismo, la dinámica del electrón.

En la parte correspondiente a la electrodinámica, Albert Einstein formula su teoría aplicando, para un espacio vacío, la transformación de coordenadas –que forma la base de la cinemática relativista– a las ecuaciones de Maxwell-Hertz; esta aplicación revela, una vez más, que la transformación, lejos de ser un simple artificio de cálculos, posee un sentido físico esencial: las leyes del electromagnetismo clásico determinan las propiedades de dos vectores diferentes, uno del otro, el campo eléctrico de componentes X, Y, Z en el sistema K y el campo magnético de componentes L, M, N; ahora bien, transformando las ecuaciones de K a K' e imponiendo, en función a los principios de la relatividad, que las nuevas componentes de los campos X', Y',Z', L', M', N' en K, se obtienen unas relaciones donde las componentes transformadas del campo eléctrico y del campo magnético respectivamente dependen, a su vez, de los componentes iniciales de ambos campos, lo que conduce con asombrosa naturalidad a la unificación teórica del magnetismo y de la electricidad. Para ello, las relaciones necesarias en las condiciones que interesan son:

X' = X L' = L Y' = b [ Y - ( v / V ) N ] M ' = b [ M + (v / V ) Z ] Z = b [Z + ( v / V ) M ] N ' = b [ N - ( v / V ) Y ]

Por otro lado, la distinción entre fuerza eléctrica y fuerza magnética no es sino una consecuencia del estado de movimiento del sistema de coordenadas; en que, el análisis cinemático elimina la anomalía teórica prerelativista: la distinta explicación de un mismo fenómeno (la inducción electromagnética) no es más que una apariencia debida al desconocimiento del principio de relatividad y de sus consecuencias.

Por otra parte, en función de las fórmulas relativistas es factible extender los resultados precedentes a las ecuaciones de Maxwell cuando existen corrientes de convección; la conclusión es que la electrodinámica de los cuerpos en movimiento de Lorentz están conforme con el principio de relatividad.

Ahora, en cuanto a la dinámica del electrón lentamente acelerado, que exigiría una larga discusión, sólo citaremos el siguiente resultado: si se atribuye una masa m a un electrón lentamente acelerado por un campo eléctrico y en función de esta masa se puede evaluar la energía cinética de un electrón, medida en un sistema en reposo respecto al cual ha sido acelerado por el campo hasta una velocidad v.

Pero donde la formulación teórica de la parte de la electrodinámica de la relatividad restringida coloca su acento es en la propagación de las ondas electromagnéticas, de donde se deduce, siempre siguiendo el mismo método de aplicación algebraica de las fórmulas de Lorentz, las leyes de los dos fenómenos ópticos más conocidos y de gran importancia para la astronomía: el efecto Doppler (aparente cambio de frecuencia para una fuente en movimiento y que analizaremos en la siguiente separata) y la aberración, ya mencionada anteriormente.

Potencial Eléctrico

Se define el potencial se define como el trabajo realizado para trasladar un objeto de un punto a otro. En particular, para el caso eléctrico, definimos el potencial eléctrico del punto A al punto B, como el trabajo realizado para trasladar una carga positiva unitaria q de un punto a otro, desde B hasta A.

Las unidades para el potencial eléctrico son de (Joules/Coulombs o Volts). Nótese además que el trabajo que hemos sustituido en la ecuación proviene de la construcción de trabajo eléctrico.
Si consideramos que hemos construido la noción de potencial eléctrico en base a la construcción de un campo conservativo, esto del hecho de suponer una fuerza que tienda a contrarrestar la fuerza del campo para mantener la partícula cargada en equilibrio estático.
Analicemos el potencial eléctrico necesario para desplazar una carga puntual desde un punto B a un punto A.
Recordemos primero que el campo de una carga puntual esta determinado en forma radial como se muestra a continuación, sin embargo, recordemos que el hecho de haber tomado un campo conservativo le resta importancia a ese hecho.

Carga Eléctrica


En física, la carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas (perdida o ganancia de electrones) que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos siendo, a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética.

La carga eléctrica es de naturaleza discreta, fenómeno demostrado experimentalmente por Robert Millikan. Por razones históricas, a los electrones se les asignó carga negativa: –1, también expresada –e. Los protones tienen carga positiva: +1 o +e. A los quarks se les asigna carga fraccionaria: ±1/3 o ±2/3, aunque no se han podido observar libres en la naturaleza.
En el Sistema Internacional de Unidades la unidad de carga eléctrica se denomina culombio (símbolo C). Se define como la cantidad de carga que pasa por la sección transversal de un conductor eléctrico en un segundo, cuando la corriente eléctrica es de un amperio, y se corresponde con la carga de 6,24 × 1018 electrones aproximadamente.
Desde la Antigua Grecia se conoce que al frotar ámbar con una piel, ésta adquiere la propiedad de atraer cuerpos ligeros tales como trozos de paja y pequeñas semillas. Su descubrimiento se le atribuye al filósofo griego Tales de Mileto, quién vivió hace unos 2500 años.

El médico inglés William Gilbert (1540 - 1603) observó que algunos materiales se comportan como el ámbar al frotarlos y que la atracción que ejercen se manifiesta sobre cualquier cuerpo, aún cuando no fuera ligero. Como el nombre griego correspondiente al ámbar es elektron, Gilbert comenzó a utilizar el término eléctrico para referirse a todo material que se comportaba como aquél, lo que originó los términos electricidad y carga eléctrica. Además, en los estudios de Gilbert se puede encontrar la diferenciación de los fenómenos eléctricos y magnéticos.

El descubrimiento de la atracción y repulsión de elementos al conectarlos con materiales eléctricos se atribuye a Stephen Gray. El primero en proponer la existencia de dos tipos de carga es Charles du Fay, aunque fue Benjamin Franklin quién al estudiar estos fenómenos descubrió como la electricidad de los cuerpos, después de ser frotados, se distribuía en ciertos lugares donde había más atracción; por eso los denominó (+) y (-).

Sin embargo, fue solo hacia mediados del siglo XIX cuando estas observaciones fueron planteadas formalmente, gracias a los experimentos sobre la electrólisis que realizó Michael Faraday, hacia 1833, y que le permitieron descubrir la relación entre la electricidad y la materia; acompañado de la completa descripción de los fenómenos electromagnéticos por James Clerk Maxwell.

Posteriormente, los trabajos de Joseph John Thomson al descubrir el electrón y de Robert Millikan al medir su carga, fueron de gran ayuda para conocer la naturaleza discreta de la carga.

Ley de Coulomb


La Ley de Coulomb lleva su nombre en honor a Charles-Augustin de Coulomb, quien fue el primero en describir en 1785 las características de las fuerzas entre cargas eléctricas. Henry Cavendish también obtuvo la relación inversa de la ley con la distancia, aunque nunca publicó sus descubrimientos y no fue hasta 1879 cuando James Clerk Maxwell los publicó.

La ley puede expresarse como:

La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.
Coulomb desarrolló la balanza de torsión con la que determinó las propiedades de la fuerza electrostática. Este instrumento consiste en una barra que cuelga de una fibra capaz de torcerse. Si la barra gira, la fibra tiende a regresarla a su posición original, con lo que conociendo la fuerza de torsión que la fibra ejerce sobre la barra, se puede determinar la fuerza ejercida en un punto de la barra.


Variación de la Fuerza de Coulomb en función de la distancia.En la barra de la balanza, Coulomb colocó una pequeña esfera cargada y a continuación, a diferentes distancias, posicionó otra esfera también cargada. Luego midió la fuerza entre ellas observando el ángulo que giraba la barra.

Dichas mediciones permitieron determinar que:

La fuerza de interacción entre dos cargas y duplica su magnitud si alguna de las cargas dobla su valor, la triplica si alguna de las cargas aumenta su valor en un factor de tres, y así sucesivamente. Concluyó entonces que el valor de la fuerza era proporcional al producto de las cargas:

Si la distancia entre las cargas es , al duplicarla, la fuerza de interacción disminuye en un factor de 4 (2²); al triplicarla, disminuye en un factor de 9 (3²) y al cuadriplicar , la fuerza entre cargas disminuye en un factor de 16 (4²). En consecuencia, la fuerza de interacción entre dos cargas puntuales, es inversamente proporcional al cuadrado de la distancia:

Asociando ambas relaciones:


Finalmente, se introduce una constante de proporcionalidad para transformar la relación anterior en una igualdad:

Enunciado de la ley


La ley de Coulomb es válida sólo en condiciones estacionarias, es decir, cuando no hay movimiento de las cargas o, como aproximación cuando el movimiento se realiza a velocidades bajas y en trayectorias rectilíneas uniformes. Es por ello llamada fuerza electrostática.